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We begin our analysis by assuming that the price of an underlying asset (currently worth

$S ) changes continuously over time according to the Geometric Brownian Motion equation;

i.e,

dS = µSdt+ σSdz, (1)

In equation (1), dS corresponds to the instantaneous change in the price of the asset; dS

consists of a non-stochastic component (given by µSdt) and a stochastic component (given

by σSdz).

Itô’s Lemma provides a method for determining the corresponding differential equation

for the price of virtually any derivative security which derives its value from S. Suppose that

f = f (S,t) represents the price of some such derivative security. Since f is twice differentiable

in S and once differentiable in t, Itô’s Lemma justifies the use of the following Taylor-series-

like expansion for the instantaneous change in the price of the derivative security (given by

df ):

df =
∂f

∂t
dt+

∂f

∂S
dS +

1

2

∂2f

∂S2
dS2. (2)

Next, we simplify the right hand side of equation (2). Since the third term in that equa-

tion is a function of dS2, we square the right hand side of equation (1) and obtain dS2 =

(µSdt+ σSdz)2 = µ2S2dt2 + σ2S2dt + 2µσSdt3/2. However, since the first and third terms

of this equation involve dt raised to powers greater than 1, this implies that dS2 = σ2S2dt.1
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1Pennacchi (2008) makes the following very important observation about Wiener processes (cf. footnote
12 on page 240): “. . . it may be helpful to remember that in the continuous-time limit dz2 = dt, but dzdt = 0,
and dtn = 0 for n > 1.”
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Substituting this expression for dS2 into equation (2) yields equation (3):

df =
∂f

∂t
dt+

∂f

∂S
dS +

1

2
σ2S2 ∂

2f

∂S2
dt. (3)

Suppose that at time t, we construct a hedge portfolio consisting of one unit of the derivative

security worth $f(S, t) and a short position in some quantity ∆t of the underlying asset worth

$∆tSt per unit.
2 We express the hedge ratio ∆t as a function of t because the portfolio will

be dynamically hedged ; i.e., as the price of the underlying asset changes through time, so

will ∆t.
3 Then the value of this hedge portfolio is Vt = f(S, t)−∆tSt, which implies

dV = df −∆tdS =

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
dt︸ ︷︷ ︸

deterministic

+

(
∂f

∂S
−∆t

)
dS.︸ ︷︷ ︸

stochastic

(4)

Note that there are stochastic as well as deterministic components on the right-hand side

of equation (4). The deterministic component is represented by the first product involving

dt, whereas the stochastic component is represented by the second product involving dS.

However, by setting ∆t equal to
∂f

∂S
, the stochastic component disappears since

∂f

∂S
−∆t = 0,

leaving:

dV = df −∆tdS =

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
dt. (5)

Since this is a perfectly hedged portfolio, it has no risk. In order to prevent arbitrage, the

hedge portfolio must earn the riskless rate of interest r ; i.e.,

dV = rV dt. (6)

We will assume that ∆t =
∂f

∂S
, so V = f (S, t) -

∂f

∂S
S. Substituting this into the right-hand

side of equation (6) and equating the result with the right-hand side of equation (5), we

2Without loss of generality, this hedge portfolio can also consist of a short position in the derivative
security and a long position in the underlying asset; such is the approach taken in Hull’s derivation of the
Black-Scholes-Merton differential equation (see pp. 331-332 of Hull (9th edition)).

3Intuitively, as the underlying asset price increases (decreases), then ∆t must also increase (decrease) in
order to form a perfect hedge, since changes in the price of the derivative security will more (less) closely
mimic changes in the underlying asset price as it increases (decreases).
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obtain:

r

(
f − S

∂f

∂S

)
dt =

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
dt. (7)

Dividing both sides of equation (7) by dt and rearranging results in the Black-Scholes-Merton

(non-stochastic) partial differential equation:

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
. (8)

Equation (8) shows that the valuation relationship between a derivative security and its

underlying asset is deterministic because dynamic hedging enables the investor to be perfectly

hedged over infinitesimally small units of time. Since risk preferences play no role in this

equation, this implies that the price of a derivative security may be calculated as if investors

are risk neutral, in the sense that the expected rate of return on the underlying asset is set

equal to the riskless rate of interest.4 As Hull points out in the sixth section of his “The

Black-Scholes-Merton Model” chapter, equation (8) provides the necessary framework for

obtaining arbitrage-free prices for derivative securities that reference S as the underlying

asset. For example, in the case of a call option, one can determine f ’s value by solving

equation (8) subject to the “key” boundary condition that f = max(S −K, 0) at time T.5

Furthermore, one can also confirm whether any particular derivative pricing formula correctly

indicates the arbitrage-free price by showing that it satisfies equation (8). If equation (8) is

not satisfied, then the price indicated by such a formula cannot possibly be arbitrage-free.

It should be noted that the partial derivatives given by
∂f

∂t
,
∂f

∂S
, and

∂2f

∂S2
in equation (8)

correspond to the so-called “Greeks” for pricing derivative securities. The partial derivative

of f with respect to t (
∂f

∂t
) is called the derivative’s “theta”. Theta measures how the price

of the derivative changes with respect to the passage of time.6 The partial derivative of

4Of course, this same result (i.e., risk neutral valuation) also obtains under the discrete-time case using
the binomial model.

5The pricing equations for call and put options can also be determined via integration; e.g., see Derivation
and Comparative Statics of the Black-Scholes Call and Put Option Pricing Equations.

6For call options and forward contracts, theta is negative for all possible values of the underlying asset; i.e.,
as the time to expiration or maturity of the derivatives contract becomes smaller, the value of the derivative
declines (holding other factors constant). On the other hand, theta is positive for deeply in-the-money and
negative for out-of-the-money put options.
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f with respect to S (
∂f

∂S
) is called the derivative’s “delta”. Delta indicates the number of

units of the underlying asset per unit of the derivative security which must be held so as to

render the hedge portfolio riskless. Finally, the second partial derivative of f with respect

to S (
∂2f

∂S2
) is called the derivative’s “gamma”. Gamma measures the rate of change in the

delta with respect to changes in the price of the underlying asset.
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