Midterm Exam \#2 Formula Sheet

Put-call parity theorem (assuming no dividends; options are European)

where
$\delta t=$ the length of a timestep; e.g., if the timestep is one year, then $\delta t=1$.
$n=$ the number of timesteps until expiration;
$c=$ value of a call option with an exercise price of K and n timesteps until expiration;
$p=$ value of a put option with an exercise price of K and n timesteps until expiration;
$r=$ the annualized riskless rate of interest; and
$S=$ the value of the underlying asset.

Delta Hedging Approach for Option Pricing (1 timestep call and put)

- Initial hedge portfolio value for call option: $V_{H}=c-\Delta S$
- u node hedge portfolio value for call option: $V_{H}^{u}=c_{u}-\Delta S_{u}$
- d node hedge portfolio value for call option: $V_{H}^{d}=c_{d}-\Delta S_{d}$
- Set $V_{H}^{u}=V_{H}^{d} \rightarrow \Delta=\frac{c_{u}-c_{d}}{S_{u}-S_{d}}$. Then $V_{H}=c-\Delta S=e^{-r \delta t} V_{H}^{u}=e^{-r \delta t} V_{H}^{d}$ and either of these equations can solved for the arbitrage-free price of the call, c.
- Put solution procedure is similar to the call solution procedure, except hedge portfolio values are $V_{H}=p+\Delta S, V_{H}^{u}=p_{u}+\Delta S_{u}$, and $V_{H}^{d}=p_{d}+\Delta S_{d}$.

Replicating Portfolio Approach for Option Pricing (for a 1 timestep call or put)

- u node replicating portfolio value for option (call or put): $V_{R P}^{u}=\Delta S_{u}+e^{r \delta t} B$
- d node replicating portfolio value for option (call or put): $V_{R P}^{d}=\Delta S_{d}+e^{r \delta t} B$
- At the tree's inception, $f=V_{R P}=\Delta S+B$, where f is the arbitrage-free price of the option, $\Delta=\frac{f_{u}-f_{d}}{S_{u}-S_{d}}$, $B=\frac{u f_{d}-d f_{u}}{e^{r \delta t}(u-d)}$, and $f_{u}\left(f_{d}\right)$ correspond to option value at node u (d).

Risk Neutral Valuation Formula (for a 1 timestep call or put):

$$
f=e^{-r \delta t}\left[q f_{u}+(1-q) f_{d}\right], \text { where } q=\frac{e^{r \delta t}-d}{u-d}
$$

Risk Neutral Valuation Formula for an n timestep European call option (AKA the "Cox-Ross-Rubinstein" model):

$$
c=e^{-r n \delta t}\left[\sum_{j=a}^{n}\left(\frac{n!}{j!(n-j)!}\right) q^{j}(1-q)^{n-j}\left(u^{j} d^{n-j} S-K\right)\right]
$$

where $a=$ the smallest integer value $>\frac{\ln \left(K / S d^{n}\right)}{\ln (u / d)}$.

Black-Scholes-Merton Call and Put Option Pricing Formulas

$$
c=S N\left(d_{1}\right)-e^{-r(T-t)} K N\left(d_{2}\right) \text { and } p=e^{-r(T-t)} K N\left(-d_{2}\right)-S N\left(-d_{1}\right),
$$

where
$d_{1}=\frac{\ln (S / K)+\left(r+.5 \sigma^{2}\right) T}{\sigma \sqrt{T}} ;$
$d_{2}=d_{1}-\sigma \sqrt{T} ;$
$\sigma=$ annualized volatility of underlying asset's rate of return;
$N\left(d_{1}\right)=$ standard normal distribution evaluated at d_{1};
$N\left(d_{2}\right)=$ standard normal distribution evaluated at d_{2};
$N\left(-d_{1}\right)=$ standard normal distribution evaluated at $-d_{1}$; and
$N\left(-d_{2}\right)=$ standard normal distribution evaluated at $-d_{2}$.

Basic Wiener Process

$$
d z=\varepsilon \sqrt{d t}
$$

where ε is a standard normal random variable, $E(\varepsilon)=0, \sigma_{\varepsilon}^{2}=1, E(d z)=0$, and $\sigma_{d z}^{2}=d t$.

Generalized Wiener Process

$$
d x=a d t+b d z
$$

where $E(d x)=a d t$ and $\sigma_{d x}^{2}=b^{2} d t$,

Geometric Brownian Motion

$$
d S=\mu S d t+\sigma S d z
$$

where:

- S is the stock price at time t;
- μ is the annualized expected return on the underlying asset;
- σ is annualized volatility or standard deviation of the return on the underlying asset;
- $d z$ is the basic Wiener process; and
- $d t$ is the time increment.

