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Suppose that the price of an asset changes continuously according to the Geometric

Brownian Motion equation; i.e,

dS = µSdt+ σSdz, (1)

In equation (1), S is the current (date t) price of an asset, µ is its annualized expected return,

σ represents its annualized volatility, and dS corresponds to the instantaneous change in the

asset price (i.e., the change that occurs between date t and date t + dt). As shown in

equation (1), instantaneous asset price changes are partially deterministic (as indicated by

the so-called “drift”, or µSdt term) and partially stochastic (as indicated by the σSdz term).

The σSdz term is stochastic because dz = ϵ
√
dt is a Wiener process with mean E(dz) = 0

and variance V ar(dz) = dt.1

The Geometric Brownian Motion equation is often referred to as an exponential stochastic

differential equation because its solution is an exponential function; specifically, ST = Sex,

where ST represents the asset price T − t periods from now, T − t ≥ 0, and x = (µ −

σ2/2)(T − t) + ϵσ
√
T − t. Since ϵ is normally distributed, so is x; thus, ST is lognormally

distributed.2 As of time T, the mean of ST is E(ST ) = Seµ(T−t), and its variance is σ2
ST

=

S2e2µ(T−t)(eσ
2(T−t) − 1) = (E(ST ))

2(eσ
2(T−t) − 1). Since ST is lognormally distributed, ST/S
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1Pennacchi (2008) makes the following very important observation about Wiener processes (cf. footnote
12 on page 240): “. . . it may be helpful to remember that in the continuous-time limit dz2 = dt, but dzdt = 0,
and dtn = 0 for n > 1.”

2The lognormal distribution is a particularly suitable candidate for modeling asset prices. Besides being
mathematically tractable, the lognormal distribution generates price patterns that resemble real world asset
price patterns. Furthermore, under the lognormal distribution, asset prices are non-negative, being bounded
from below at zero and unbounded from above.
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is also lognormally distributed; therefore, ln ST/S is normally distributed. Furthermore, ln

ST/S corresponds to the T - t period continuously compounded rate of return on the asset.3

In order to find the expected value and variance of ln ST/S, some calculus is required.

Consider a Taylor series expansion for the function G = G(S, t) around date t and the value

of S at date t :

G(S(t+ dt), t+ dt) = G(S(t), t) +
∂G

∂t
dt+

∂G

∂S
dS

+
1

2

[
∂2G

∂t2
dt2 +

∂2G

∂S2
dS2 +

∂2G

∂S∂t
dSdt

]
+R, (2)

where R corresponds to the “remainder” term consisting of third and higher order terms.

Fortunately, since dz2 = dt, dzdt = 0, and dtn = 0 for n > 1 (see Pennacchi (2008), footnote

12 on page 240), the first and third bracketed terms in equation (2) vanish, resulting in

equation (3):

G(S(t+ dt), t+ dt)−G(S(t), t) = dG =
∂G

∂t
dt+

∂G

∂S
dS +

1

2

∂2G

∂S2
dS2 (3)

Equation (3) is Itô’s Lemma, also known as the fundamental theorem of stochastic calculus

(see Pennacchi (2008), p. 238). Since dS2 = σ2S2dt,4 we substitute this expression for dS2

into equation (3) and obtain equation (4):

dG =
∂G

∂t
dt+

∂G

∂S
dS +

1

2
σ2S2∂

2G

∂S2
dt (4)

Substituting the right-hand side of equation (1) into the right-hand side of equation (4)

3This highlights yet another advantage of assuming that asset prices are lognormally distributed. Log-
normally distributed prices imply that continuously compounded asset returns (x = ln(ST /S)) are normally
distributed, thus resembling real world returns (in the sense that realized returns can be negative, zero, or
positive).

4As noted in the previous paragraph, all terms involving dt raised to powers greater than 1 equal zero;
thus, dS2 = (µSdt+ σSdz)

2
= µ2S2dt2 + σ2S2dt+ 2µσSdt3/2 = σ2S2dt.
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yields

dG =

(
∂G

∂t
+

∂G

∂S
µS +

1

2
σ2S2∂

2G

∂S2

)
dt+

∂G

∂S
σSdz (5)

Suppose G = ln S. Then
∂G

∂S
=

1

S
,
∂2G

∂S2
= − 1

S2
, and

∂G

∂t
= 0. Therefore,

dG =

(
0 +

1

S
µS +

1

2
σ2S2

(
− 1

S2

))
dt+

1

S
σSdz

=

(
µ− 1

2
σ2

)
dt+ σdz.

(6)

Consequently, the change in the natural logarithm of the asset price between now (date

0) and date T, lnST − lnS = ln
ST

S
, is normally distributed with mean

(
µ− 1

2
σ2

)
T and

variance σ2T ; i.e.,

lnST − lnS ∼ N

((
µ− 1

2
σ2

)
T, σ2T

)
(7)

or equivalently,

lnST ∼ N

(
lnS +

(
µ− 1

2
σ2

)
T, σ2T

)
(8)

Note that the expressions given by (7) and (8) correspond to expressions (18) and (19) in

the “Wiener Processes and Ito’s Lemma” textbook chapter.
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