Wiener Processes and Ito's Lemma

Modeling Stock Prices

- We have previously modeled stock prices in a binomial (discrete time) framework.
- Here, we show (among other things) that the limiting case of the binomial tree (i.e., when the timestep $\delta t \rightarrow 0$) yields the continuous time model.

Markov Processes

- In a Markov process, future movements in a random variable depend only on *where we are*, not the history of how we *got where we are*;
 i.e., there is no serial correlation.
- This is also known as a "random walk".
- We assume in both the discrete and continuous time cases that stock prices follow Markov processes.

Discrete & Continuous Stock Return Dynamics

 Since changes in asset prices over time (notated as δS/S) follow Markov processes, the following "time series" equation for δS/S is implied:

$$\delta S / S = \mu \delta t + \sigma \varepsilon \sqrt{\delta t},$$

where ε is a standard normal random variable; i.e., $\varepsilon \sim N(0,1)$.

Discrete & Continuous Stock Return Dynamics • Note that $E(\delta S / S) = E(\mu \delta t + \sigma \varepsilon \sqrt{\delta t}) = \mu \delta t$, since $E(\varepsilon) = 0$. • Also note that $\sigma_{\delta S/S}^2 = E \left| \left(\delta S / S - \mu \delta t \right)^2 \right|$ $= E \left| \left(\mu \delta t + \sigma \varepsilon \sqrt{\delta t} - \mu \delta t \right)^2 \right|$ $= \sigma^2 \delta t E \left[\varepsilon^2 \right] = \sigma^2 \delta t.$

Wiener Process

- In the equation $\delta S / S = \mu \delta t + \sigma \varepsilon \sqrt{\delta t}$, the second term ($\sigma \varepsilon \sqrt{\delta t}$) is typically written $\sigma \delta z$.
- δz is commonly referred to as a Wiener process (so named in honor of American mathematician Norbert Wiener (1894-1964)).
- The Wiener process has been used in physics to describe the motion of a particle that is subject to a large number of small molecular shocks, and is frequently referred to as Brownian motion.

Geometric Brownian Motion (GBM)

• The continuous time analog of the discrete time return equation is the geometric Brownian motion equation:

$$dS / S = \mu dt + \sigma dz,$$

where
$$dz = \mathcal{E}\sqrt{dt}$$
.

• Thus, asset price changes conform to the following equation:

$$dS = \mu S dt + \sigma S dz.$$

Geometric Brownian Motion (GBM)

- Equation (1) implies that asset prices are lognormally distributed; thus, they are bounded from below at 0, and unbounded from above.
- The mean and variance of the lognormally distributed asset price T periods from today are $S_T = Se^{\mu T}$, and $\sigma_{S_T}^2 = S^2 e^{2\mu T} (e^{2\sigma^2 T} - 1)$. Suppose that $S = $20, T = 1, \mu = .20$, and $\sigma = .4$. Then $E(S(T)) = 20e^{.2(1)} = $24.43,$ $\sigma_{S(T)}^2 = 20^2 e^{2(.2(1))} (e^{(.04^2(1))} - 1) = 103.54$, and $\sigma_{S(T)} = \sqrt{103.54} = 10.18.$

Ito's Lemma

- Since $\tilde{S}_T / S = \tilde{R}_T$ is a *lognormally* distributed random variable, it follows that the (continuously compounded) log return $\ln \tilde{S}_T / S = \ln \tilde{R}_T$ is *normally* distributed.
- In order to determine the mean and standard deviation for the log return distribution, some calculus is required.
- However, since we know that asset prices evolve according to the Geometric Brownian Motion equation, we can use Ito's Lemma to make this determination!

Ito's Lemma

Let G = G(S, t). Then according to Ito's Lemma,

$$dG = \frac{\partial G}{\partial t}dt + \frac{\partial G}{\partial S}dS + \frac{1}{2}\frac{\partial^2 G}{\partial S^2}dS^2.$$
 (3)

Substituting $dS^2 = S^2 \sigma^2 dt$ into (3) yields equation (4):

$$dG = \frac{\partial G}{\partial t}dt + \frac{\partial G}{\partial S}dS + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 G}{\partial S^2}dt.$$
 (4)

Substituting the right-hand side of equation (1) into the righthand side of equation (4) yields

$$dG = \left(\frac{\partial G}{\partial t} + \frac{\partial G}{\partial S}\mu S + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 G}{\partial S^2}\right)dt + \frac{\partial G}{\partial S}\sigma Sdz \quad (5)$$

Ito's Lemma: First Application Suppose $G = \ln S$. Then $\frac{\partial G}{\partial s} = \frac{1}{s}$, $\frac{\partial^2 G}{\partial \varsigma^2} = -\frac{1}{\varsigma^2}$, and $\frac{\partial G}{\partial t} = 0$. Therefore, $dG = \left(0 + \frac{1}{S}\mu S + \frac{1}{2}\sigma^2 S^2 \left(-\frac{1}{S^2}\right)\right) dt + \frac{1}{S}\sigma S dz$ (6) $= \left(\mu - \frac{1}{2}\sigma^2\right)dt + \sigma dz.$

Ito's Lemma: First Application

Consequently, the change in $\ln S$ between date zero and some future date T, $\ln \tilde{S}_T - \ln S_0 = \ln \frac{\tilde{S}_T}{S_0}$ is normally

distributed with mean $\left(\mu - \frac{1}{2}\sigma^2\right)T$ and variance $\sigma^2 T$;

i.e.,

$$\ln\frac{\tilde{S}_T}{S_0} \sim N\left(\left(\mu - \frac{1}{2}\sigma^2\right)T, \sigma^2 T\right), \qquad (7)$$

or equivalently,

$$\ln \tilde{S}_{T} \sim N \left(\ln S_{0} + \left(\mu - \frac{1}{2} \sigma^{2} \right) T, \sigma^{2} T \right). \quad (8)$$

Intuition about μ and $\mu - \sigma^{2}/2$

- μ corresponds to the expected return in a very short time, δt , expressed with a compounding frequency of δt (AKA the *arithmetic* mean return).
- $\mu \sigma^2/2$ corresponds to the expected return in a long period of time expressed with continuous compounding (AKA the *geometric* mean return).

Numerical Example

- Suppose that returns in successive years are 15%, 20%, 30%, -20% and 25% (ann. comp.)
- The arithmetic mean of the returns is 14%
- The returned that would actually be earned over the five years (the geometric mean) is 12.4% (ann. comp.)
- The arithmetic mean of 14% is analogous to μ .
- The geometric mean of 12.4% is analogous to $\mu \sigma^2/2$.

Simulation of GBM

Asset

100

Time 0	Drift	Uncertainty	Change	Asset \$100.00	Return
0.004	\$0.04	-\$0.06	-\$0.02	\$99.98	-0.02%
0.008	\$0.04	-\$0.52	-\$0.48	\$99.50	-0.48%
0.012	\$0.04	-\$2.18	-\$2.14	\$97.36	-2.15%
0.016	\$0.04	\$0.27	\$0.30	\$97.66	0.31%
0.02	\$0.04	\$0.29	\$0.33	\$97.99	0.34%
0.024	\$0.04	-\$0.40	-\$0.36	\$97.63	-0.37%
0.028	\$0.04	-\$0.79	-\$0.75	\$96.88	-0.77%
0.032	\$0.04	\$0.59	\$0.63	\$97.51	0.65%
0.036	\$0.04	-\$1.08	-\$1.04	\$96.47	-1.07%
0.04	\$0.04	\$1.18	\$1.22	\$97.69	1.26%
0.044	\$0.04	\$0.72	\$0.75	\$98.44	0.77%
0.048	\$0.04	\$2.03	\$2.07	\$100.51	2.11%
0.052	\$0.04	\$0.05	\$0.09	\$100.60	0.09%
0.056	\$0.04	\$1.94	\$1.98	\$102.58	1.97%
0.06	\$0.04	\$0.58	\$0.62	\$103.20	0.61%
0.063	\$0.04	-\$1.50	-\$1.45	\$101.75	-1.41%
0.067	\$0.04	\$0.90	\$0.94	\$102.68	0.92%
0.071	\$0.04	\$1.89	\$1.93	\$104.62	1.88%
0.075	\$0.04	\$0.10	\$0.14	\$104.75	0.13%
0.079	\$0.04	\$0.60	\$0.64	\$105.39	0.61%
0.083	\$0.04	\$0.48	\$0.53	\$105.92	0.50%
0.087	\$0.04	-\$0.51	-\$0.47	\$105.45	-0.44%
0.091	\$0.04	-\$1.98	-\$1.94	\$103.51	-1.84%
0.095	\$0.04	\$0.36	\$0.40	\$103.92	0.39%
0.099	\$0.04	\$0.74	\$0.78	\$104.70	0.75%
0.103	\$0.04	-\$0.52	-\$0.48	\$104.21	-0.46%
0.107	\$0.04	-\$0.01	\$0.03	\$104.24	0.03%
0.111	\$0.04	-\$2.68	-\$2.64	\$101.60	-2.53%
0.115	\$0.04	\$0.28	\$0.32	\$101.92	0.31%
0.119	\$0.04	\$0.98	\$1.02	\$102.95	1.00%
0.123	\$0.04	-\$0.53	-\$0.49	\$102.46	-0.47%
0.127	\$0.04	-\$3.78	-\$3.74	\$98.72	-3.65%
0.131	\$0.04	\$0.55	\$0.59	\$99.31	0.60%
0.135	\$0.04	-\$2.29	-\$2.25	\$97.06	-2.26%
0.139	\$0.04	-\$1.58	-\$1.54	\$95.53	-1.58%
0.143	\$0.04	\$0.81	\$0.84	\$96.37	0.88%
0.147	\$0.04	\$0.63	\$0.66	\$97.03	0.69%
0.151	\$0.04	\$0.79	\$0.83	\$97.86	0.85%

Daily mu - .5var Annual mu - .5var Annual Arithmetic Return 46.61% 44.84% 0.1 μ \$156.57 Annual Log Return 44.63% Initial price x exp(o2) 0.2 σ Final simulated price \$156.25 Timestep 0.004 Std. Dev. 1.19% Min -3.65% 25th pct. -0.65% Median 0.28% 75th pct. 0.96% Max 3.09% \$180.00 \$160.00 \$140.00 \$120.00 \$100.00 Growth over time - Asse Linear (Asset) \$80.00 \$60.00 \$40.00 \$20.00 \$0.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time (Years)

0.18%

0.18%

Daily Arithmetic Return

Ito's Lemma: Second Application

• Recall that the application of Ito's lemma for an arbitrary function G = G(S, t) gave rise to the following stochastic equation:

$$dG = \left(\frac{\partial G}{\partial t} + \frac{\partial G}{\partial S}\mu S + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 G}{\partial S^2}\right)dt + \frac{\partial G}{\partial S}\sigma Sdz.$$

- Consider a forward contract on a non-dividend paying stock; its date *t* "arbitrage-free" price is $F(S,t) = F_t = S_t e^{r(T-t)}$.
- Next, apply the equation for dG to determine dFs equation:

$$dF = \left(\frac{\partial F}{\partial t} + \frac{\partial F}{\partial S}\mu S + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 F}{\partial S^2}\right)dt + \frac{\partial F}{\partial S}\sigma Sdz$$

Since $\frac{\partial F}{\partial S} = e^{r(T-t)}$, $\frac{\partial^2 F}{\partial S^2} = 0$, and $\frac{\partial F}{\partial t} = -rSe^{r(T-t)}$, then $dF = \left(-rSe^{r(T-t)} + e^{r(T-t)}\mu S + 0\right)dt + e^{r(T-t)}\sigma Sdz.$

• Substituting *F* for $Se^{r(T-t)}$ and simplifying further, we obtain $dF = (\mu - r)Fdt + \sigma Fdz$.