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Modeling Stock Prices
�We have previously modeled stock prices 

in a binomial (discrete time) framework.
�Here, we show (among other things) that 

the limiting case of the binomial tree (i.e., 
when the timestep dt ® 0) yields the 
continuous time model.
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Markov Processes
� In a Markov process, future movements in a 

random variable depend only on where we are, 
not the history of how we got where we are; 
i.e., there is no serial correlation.

�This is also known as a “random walk”.
�We assume in both the discrete and 

continuous time cases that stock prices follow 
Markov processes.
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Discrete & Continuous Stock 
Return Dynamics
• Since changes in asset prices over time 

(notated as dS/S) follow Markov processes, 
the following “time series” equation for dS/S 
is implied:  

/S S t td µd se d= + , 

where e is a standard normal random variable; 
i.e., (0,1)Ne ! . 
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• Note that ( ) ( )/E S S E t t td µd se d µd= + = , 

since E(e) = 0. 
• Also note that 
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Discrete & Continuous Stock 
Return Dynamics



Wiener Process
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• In the equation /S S t td µd se d= + , the 
second term ( tse d ) is typically written zsd . 

• zd  is commonly referred to as a Wiener process 
(so named in honor of American 
mathematician Norbert Wiener (1894-1964)). 

• The Wiener process has been used in physics 
to describe the motion of a particle that is 
subject to a large number of small molecular 
shocks, and is frequently referred to as 
Brownian motion.  



Geometric Brownian Motion (GBM)
• The continuous time analog of the discrete time 

return equation is the geometric Brownian 
motion equation: 

/ ,dS S dt dzµ s= +  

where dz dte= . 

• Thus, asset price changes conform to the 
following equation:  

.dS Sdt Sdzµ s= +           (1) 
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Geometric Brownian Motion (GBM)
• Equation (1) implies that asset prices are 

lognormally distributed; thus, they are bounded 
from below at 0, and unbounded from above. 

• The mean and variance of the lognormally 
distributed asset price T periods from today are 

22 2 2 2,  and ( 1).
T

T T T
T SS Se S e eµ µ ss= = - Suppose 

that S = $20, T = 1, .20,  and .4.µ s= =  Then 
.2(1)( ( )) 20 $24.43,E S T e= =

22 (.04 (1))
( )

2 2(.2(1))20 1) 103.54,  and(S T e es == -  

( ) 103.54 10.18.S Ts = =  
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The Lognormal Distribution
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• Since is a lognormally distributed 
random variable, it follows that the (continuously 
compounded) log return  is 
normally distributed.   

• In order to determine the mean and standard 
deviation for the log return distribution, some 
calculus is required.   

• However, since we know that asset prices evolve 
according to the Geometric Brownian Motion 
equation, we can use Ito's Lemma to make this 
determination!  

/T TS S R=! !

ln / lnT TS S R=! !

Ito’s Lemma
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Ito’s Lemma

11 Lecture #10: Wiener Processes and Ito's Lemma

Let G = G(S, t).  Then according to Ito’s Lemma,  
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Substituting the right-hand side of equation (1) into the right-
hand side of equation (4) yields 
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Suppose G = ln S.  Then 
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Ito’s Lemma: First Application
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Consequently, the change in ln S between date zero and 

some future date T, 0
0

ln ln ln T
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Ito’s Lemma: First Application
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Intuition about µ and µ−s 2/2

14

�µ corresponds to the expected return in a 
very short time, dt, expressed with a 
compounding frequency of  dt (AKA the 
arithmetic mean return).

�µ −s2/2 corresponds to the expected 
return in a long period of  time expressed 
with continuous compounding (AKA the 
geometric mean return).

Lecture #10: Wiener Processes and Ito's Lemma



Numerical Example
� Suppose that returns in successive years are 

15%, 20%, 30%, −20% and 25% (ann. comp.)
� The arithmetic mean of  the returns is 14%
� The returned that would actually be earned over 

the five years (the geometric mean) is 12.4% 
(ann. comp.)

� The arithmetic mean of  14% is analogous to µ.
� The geometric mean of  12.4% is analogous to 
µ−s2/2.
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Simulation of GBM
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Ito’s Lemma: Second Application
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• Recall that the application of Ito’s lemma for an arbitrary function ( , )G G S t=  
gave rise to the following stochastic equation: 
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• Consider a forward contract on a non-dividend paying stock; its date t “arbitrage-
free” price is ( )( , ) .r T t

t tF S t F S e -= =  
• Next, apply the equation for dG to determine dF’s equation: 
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• Substituting F for ( )r T tSe - and simplifying further, we obtain 
( ) .dF r Fdt Fdzµ s= - +  

 


