Wiener Processes and Ito's Lemma

Modeling Stock Prices

- We have previously modeled stock prices in a binomial (discrete time) framework.
- Here, we show (among other things) that the limiting case of the binomial tree (i.e., when the timestep $\delta t \rightarrow 0$) yields the continuous time model.

Markov Processes

- In a Markov process, future movements in a random variable depend only on where we are, not the history of how we got where we are; i.e., there is no serial correlation.
- This is also known as a "random walk".
- We assume in both the discrete and continuous time cases that stock prices follow Markov processes.

Discrete \& Continuous Stock Return Dynamics

- Since changes in asset prices over time (notated as $\delta S / S$) follow Markov processes, the following "time series" equation for $\delta S / S$ is implied:

$$
\delta S / S=\mu \delta t+\sigma \varepsilon \sqrt{\delta t}
$$

where ε is a standard normal random variable; i.e., $\varepsilon \sim N(0,1)$.

Discrete \& Continuous Stock Return Dynamics

- Note that $E(\delta S / S)=E(\mu \delta t+\sigma \varepsilon \sqrt{\delta t})=\mu \delta t$, since $E(\varepsilon)=0$.
- Also note that

$$
\begin{aligned}
\sigma_{\partial S / S}^{2} & =E\left[(\delta S / S-\mu \delta t)^{2}\right] \\
& =E\left[(\mu \delta t+\sigma \varepsilon \sqrt{\delta t}-\mu \delta t)^{2}\right] \\
& =\sigma^{2} \delta t E\left[\varepsilon^{2}\right]=\sigma^{2} \delta t .
\end{aligned}
$$

Wiener Process

- In the equation $\delta S / S=\mu \delta t+\sigma \varepsilon \sqrt{\delta t}$, the second term $(\sigma \varepsilon \sqrt{\delta t})$ is typically written $\sigma \delta_{z}$.
- $\delta_{\text {z }}$ is commonly referred to as a Wiener process (so named in honor of American mathematician Norbert Wiener (1894-1964)).
- The Wiener process has been used in physics to describe the motion of a particle that is subject to a large number of small molecular shocks, and is frequently referred to as Brownian motion.

Geometric Brownian Motion (GBM)

- The continuous time analog of the discrete time return equation is the geometric Brownian motion equation:

$$
d S / S=\mu d t+\sigma d \eta
$$

where $d z=\varepsilon \sqrt{d t}$.

- Thus, asset price changes conform to the following equation:

$$
\begin{equation*}
d S=\mu S d t+\sigma S d \tau \tag{1}
\end{equation*}
$$

Geometric Brownian Motion (GBM)

- Equation (1) implies that asset prices are lognormally distributed; thus, they are bounded from below at 0 , and unbounded from above.
- The mean and variance of the lognormally distributed asset price T periods from today are $S_{T}=S e^{\mu T}$, and $\sigma_{S_{T}}^{2}=S^{2} e^{2 \mu T}\left(e^{2 \sigma^{2} T}-1\right)$. Suppose that $S=\$ 20, T=1, \mu=.20$, and $\sigma=.4$. Then $E(S(T))=20 e^{-2(1)}=\$ 24.43$,
$\sigma_{S(T)}^{2}=20^{2} e^{2(.2(1))}\left(e^{\left(.04^{2}(1)\right)}-1\right)=103.54$, and $\sigma_{S(T)}=\sqrt{103.54}=10.18$.

The Lognormal Distribution

Ito's Lemma

- Since $\tilde{S}_{T} / S=\tilde{R}_{T}$ is a lognormally distributed random variable, it follows that the (continuously compounded) \log return $\ln \tilde{S}_{T} / S=\ln \tilde{R}_{T}$ is normally distributed.
- In order to determine the mean and standard deviation for the log return distribution, some calculus is required.
- However, since we know that asset prices evolve according to the Geometric Brownian Motion equation, we can use Ito's Lemma to make this determination!

Ito's Lemma

Let $G=G(S, \not)$. Then according to Ito's Lemma,

$$
\begin{equation*}
d G=\frac{\partial G}{\partial t} d t+\frac{\partial G}{\partial S} d S+\frac{1}{2} \frac{\partial^{2} G}{\partial S^{2}} d S^{2} \tag{3}
\end{equation*}
$$

Substituting $d S^{2}=S^{2} \sigma^{2} d t$ into (3) yields equation (4):

$$
\begin{equation*}
d G=\frac{\partial G}{\partial t} d t+\frac{\partial G}{\partial S} d S+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} G}{\partial S^{2}} d t \tag{4}
\end{equation*}
$$

Substituting the right-hand side of equation (1) into the righthand side of equation (4) yields

$$
\begin{equation*}
d G=\left(\frac{\partial G}{\partial t}+\frac{\partial G}{\partial S} \mu S+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} G}{\partial S^{2}}\right) d t+\frac{\partial G}{\partial S} \sigma S d \tau \tag{5}
\end{equation*}
$$

Ito’s Lemma: First Application

Suppose $G=\ln S$. Then $\frac{\partial G}{\partial S}=\frac{1}{S}$,

$$
\begin{align*}
& \frac{\partial^{2} G}{\partial S^{2}}=-\frac{1}{S^{2}}, \text { and } \frac{\partial G}{\partial t}=0 . \text { Therefore, } \\
& \begin{aligned}
d G & =\left(0+\frac{1}{S} \mu S+\frac{1}{2} \sigma^{2} S^{2}\left(-\frac{1}{S^{2}}\right)\right) d t+\frac{1}{S} \sigma S d ₹ \\
& =\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d ₹ .
\end{aligned} \tag{6}
\end{align*}
$$

Ito’s Lemma: First Application

Consequently, the change in $\ln S$ between date zero and some future date $T, \ln \tilde{S}_{T}-\ln S_{0}=\ln \frac{\tilde{S}_{T}}{S_{0}}$ is normally distributed with mean $\left(\mu-\frac{1}{2} \sigma^{2}\right) T$ and variance $\sigma^{2} T$; i.e.,

$$
\begin{equation*}
\ln \frac{\tilde{S}_{T}}{S_{0}} \sim N\left(\left(\mu-\frac{1}{2} \sigma^{2}\right) T, \sigma^{2} T\right), \tag{7}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\ln \tilde{S}_{T} \sim N\left(\ln S_{0}+\left(\mu-\frac{1}{2} \sigma^{2}\right) T, \sigma^{2} T\right) \tag{8}
\end{equation*}
$$

Intuition about μ and $\mu-\sigma^{2 / 2}$

- μ corresponds to the expected return in a very short time, δt, expressed with a compounding frequency of δt (AKA the arithmetic mean return).
- $\mu-\sigma^{2} / 2$ corresponds to the expected return in a long period of time expressed with continuous compounding (AKA the geometric mean return).

Numerical Example

- Suppose that returns in successive years are $15 \%, 20 \%, 30 \%,-20 \%$ and 25% (ann. comp.)
- The arithmetic mean of the returns is 14%
- The returned that would actually be earned over the five years (the geometric mean) is 12.4% (ann. comp.)
- The arithmetic mean of 14% is analogous to μ.
- The geometric mean of 12.4% is analogous to $\mu-\sigma^{2} / 2$.

Simulation of GBM

Time 0	Drift	Uncertainty Change	Asset	Return	
0.004	$\$ 0.04$	$-\$ 0.06$	$-\$ 0.02$	$\$ 100.00$	
0.008	$\$ 0.04$	$-\$ 0.52$	$-\$ 0.48$	$\$ 99.50$	-0.02%
0.012	$\$ 0.04$	$-\$ 2.18$	$-\$ 2.14$	$\$ 97.36$	-2.15%
0.016	$\$ 0.04$	$\$ 0.27$	$\$ 0.30$	$\$ 97.66$	0.31%
0.02	$\$ 0.04$	$\$ 0.29$	$\$ 0.33$	$\$ 97.99$	0.34%
0.024	$\$ 0.04$	$-\$ 0.40$	$-\$ 0.36$	$\$ 97.63$	-0.37%
0.028	$\$ 0.04$	$-\$ 0.79$	$-\$ 0.75$	$\$ 96.88$	-0.77%
0.032	$\$ 0.04$	$\$ 0.59$	$\$ 0.63$	$\$ 97.51$	0.65%
0.036	$\$ 0.04$	$-\$ 1.08$	$-\$ 1.04$	$\$ 96.47$	-1.07%
0.04	$\$ 0.04$	$\$ 1.18$	$\$ 1.22$	$\$ 97.69$	1.26%
0.044	$\$ 0.04$	$\$ 0.72$	$\$ 0.75$	$\$ 98.44$	0.77%
0.048	$\$ 0.04$	$\$ 2.03$	$\$ 2.07$	$\$ 100.51$	2.11%
0.052	$\$ 0.04$	$\$ 0.05$	$\$ 0.09$	$\$ 100.60$	0.09%
0.056	$\$ 0.04$	$\$ 1.94$	$\$ 1.98$	$\$ 102.58$	1.97%
0.06	$\$ 0.04$	$\$ 0.58$	$\$ 0.62$	$\$ 103.20$	0.61%
0.063	$\$ 0.04$	$-\$ 1.50$	$-\$ 1.45$	$\$ 101.75$	-1.41%
0.067	$\$ 0.04$	$\$ 0.90$	$\$ 0.94$	$\$ 102.68$	0.92%
0.071	$\$ 0.04$	$\$ 1.89$	$\$ 1.93$	$\$ 104.62$	1.88%
0.075	$\$ 0.04$	$\$ 0.10$	$\$ 0.14$	$\$ 104.75$	0.13%
0.079	$\$ 0.04$	$\$ 0.60$	$\$ 0.64$	$\$ 105.39$	0.61%
0.083	$\$ 0.04$	$\$ 0.48$	$\$ 0.53$	$\$ 105.92$	0.50%
0.087	$\$ 0.04$	$-\$ 0.51$	$-\$ 0.47$	$\$ 105.45$	-0.44%
0.091	$\$ 0.04$	$-\$ 1.98$	$-\$ 1.94$	$\$ 103.51$	-1.84%
0.095	$\$ 0.04$	$\$ 0.36$	$\$ 0.40$	$\$ 103.92$	0.39%
0.099	$\$ 0.04$	$\$ 0.74$	$\$ 0.78$	$\$ 104.70$	0.75%
0.103	$\$ 0.04$	$-\$ 0.52$	$-\$ 0.48$	$\$ 104.21$	-0.46%
0.107	$\$ 0.04$	$-\$ 0.01$	$\$ 0.03$	$\$ 104.24$	0.03%
0.111	$\$ 0.04$	$-\$ 2.68$	$-\$ 2.64$	$\$ 101.60$	-2.53%
0.115	$\$ 0.04$	$\$ 0.28$	$\$ 0.32$	$\$ 101.92$	0.31%
0.119	$\$ 0.04$	$\$ 0.98$	$\$ 1.02$	$\$ 102.95$	1.00%
0.123	$\$ 0.04$	$-\$ 0.53$	$-\$ 0.49$	$\$ 102.46$	-0.47%
0.127	$\$ 0.04$	$-\$ 3.78$	$-\$ 3.74$	$\$ 98.72$	-3.65%
0.131	$\$ 0.04$	$\$ 0.55$	$\$ 0.59$	$\$ 99.31$	0.60%
0.135	$\$ 0.04$	$-\$ 2.29$	$-\$ 2.25$	$\$ 97.06$	-2.26%
0.139	$\$ 0.04$	$-\$ 1.58$	$-\$ 1.54$	$\$ 95.53$	-1.58%
0.143	$\$ 0.04$	$\$ 0.81$	$\$ 0.84$	$\$ 96.37$	0.88%
0.147	$\$ 0.04$	$\$ 0.63$	$\$ 0.66$	$\$ 97.03$	0.69%
0.151	$\$ 0.04$	$\$ 0.79$	$\$ 0.83$	$\$ 97.86$	0.85%
0	0	0			

Lecture \#10: Wiener Processes and Ito's Lemma

Ito’s Lemma: Second Application

- Recall that the application of Ito's lemma for an arbitrary function $G=G(S, t)$ gave rise to the following stochastic equation:

$$
d G=\left(\frac{\partial G}{\partial t}+\frac{\partial G}{\partial S} \mu S+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} G}{\partial S^{2}}\right) d t+\frac{\partial G}{\partial S} \sigma S d ₹ .
$$

- Consider a forward contract on a non-dividend paying stock; its date t "arbitragefree" price is $F(S, t)=F_{t}=S_{t} e^{r(T-t)}$.
- Next, apply the equation for $d G$ to determine $d F$ s equation:

$$
d F=\left(\frac{\partial F}{\partial t}+\frac{\partial F}{\partial S} \mu S+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} F}{\partial S^{2}}\right) d t+\frac{\partial F}{\partial S} \sigma S d ₹ .
$$

Since $\frac{\partial F}{\partial S}=e^{r(T-t)}, \frac{\partial^{2} F}{\partial S^{2}}=0$, and $\frac{\partial F}{\partial t}=-r S e^{r(T-t)}$, then

$$
d F=\left(-r S e^{r(T-t)}+e^{r(T-t)} \mu S+0\right) d t+e^{r(T-t)} \sigma S d z .
$$

- Substituting F for $S e^{r(T-t)}$ and simplifying further, we obtain $d F=(\mu-r) F d t+\sigma F d z$.

