Statistics Tutorial (Part 1 of 2)

The mark of a truly educated man is to be moved deeply by statistics.

-- George Bernard Shaw (1856 - 1950)
Irish playwright and winner of the Nobel Prize for Literature (1925)

(Just about) all the statistics you'll need

- In this lecture. . .
- discrete and continuous probability distributions
- expected value, variance, standard deviation, covariance, and correlation
- Numerical examples - expected returns and risks for 2-asset portfolios

Discrete \& Continuous Distributions

- There are two types of random variables: discrete and continuous.
- Discrete random variables can only take on a finite number of "countable" values; e.g., time and temperature rounded to the nearest minute or degree.
- Continuous random variables can take on an infinite number of possible values which lie along a continuum; e.g., the non-rounded versions of time and temperature.

Discrete Probability Distribution

A discrete probability function is a function that satisfies the following properties:

1. The probability that the random variable X can take a specific state contingent value X_{s} is $p\left(X_{\mathrm{s}}\right)$; that is,

$$
\operatorname{Pr}\left[X=X_{s}\right]=p\left(X_{s}\right)=p_{s} .
$$

2. p_{s} is non-negative for all possible values of X_{s}.
3. The sum of p_{s} over all possible states is 1 ; i.e.,

$$
\sum_{s=1}^{n} p_{s}=1 .
$$

A consequence of properties 2 and 3 is that $0 \leq p_{s} \leq 1$ for all s.

Continuous Probability Distribution

The mathematical definition of a continuous probability function, $f(x)$, is a function that satisfies the following properties.

1. The probability that x is between two
points a and b is $\operatorname{Pr}[a \leq x \leq b]=\int_{a}^{b} f(x) d x$.
2. $f(x)$ is non-negative for all possible values of x.
3. The integral of the probability function is
one; that is, $\int_{-\infty}^{\infty} f(x) d x=1$.

Expected value

- Expected value is also known as the mean, or average value for a random variable; it represents the central value about which variable observations scatter.
- Suppose a random variable X exists which can take on $s=1,2, \ldots, n$ possible state-contingent values (each with probability p_{s}). Then the expected value of X is

$$
E(X)=\sum_{s=1}^{n} p_{s} X_{s}
$$

Properties of expected values

- Expected values have the following properties:
- $E(c)=c$. (The expected value of a constant is the constant).
- $E(c X)=c E(X)$ (The expected value of a constant times a random variable is equal to the constant multiplied by the expected value of the random variable).
- $E[X+Y]=E[X]+E[Y]$ (The expected value of a sum of random variables is equal to the sum of the expected values of the random variables).

Variance and Standard Deviation

- Variance is the expected value of the squared deviation of the random variable from its mean.
- Standard Deviation is the square root of the variance, and it measures how far most of the variable observations scatter about the mean.
- Standard Deviation is commonly used in finance and risk management as a definition for risk (although as a risk measure, it has several shortcomings which we'll discuss at a later date!).

Variance and Covariance

- The variance $\operatorname{Var}(X)$ is computed as follows:

$$
\operatorname{Var}(X)=\sigma_{X}^{2}=E\left[(X-E(X))^{2}\right]=\sum_{s=1}^{n} p_{s}\left(X_{s}-E(X)\right)^{2}
$$

- Variances have the following properties:
$\operatorname{Var}(c X)=E\left[(c X-c E(X))^{2}\right]=c^{2} \sum_{s=1}^{n} p_{s}\left(X_{s}-E(X)\right)^{2}=c^{2} \sigma_{X}^{2}$.
- If X and Y are statistically independent, $\operatorname{Var}(X+Y)$ $=\operatorname{Var}(X)+\operatorname{Var}(Y)$. (Total variance is the sum of variances)
- If X and Y are statistically dependent, $\operatorname{Var}(X+Y)=$ $\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$. (Total variance is sum of variances $\&$ covariances)

Covariance and Correlation

- Covariance between X and Y is computed as follows:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\sigma_{x y}=E[(X-E(X))(Y-E(Y))] \\
& =\sum_{s=1}^{n} p_{s}\left(X_{s}-E(X)\right)\left(Y_{s}-E(Y)\right) .
\end{aligned}
$$

Note that variance is a "special case" of covariance, where $X=Y$!

- Correlation coefficient: $\rho_{X Y}=\operatorname{Cov}(X, Y) / \sigma_{X} \sigma_{Y}$.
- Correlation is a "standardized" covariance
- Covariance is defined over the open interval $(-\infty,+\infty)$, whereas correlation is defined over the closed interval $[-1,+1]$.

Risk Management Application

- Suppose we wish to determine expected returns and risks for individual assets and portfolios comprising such assets.
- Expected returns, standard deviations, and covariances for individual assets are calculated as follows:

$$
\begin{gathered}
E\left(r_{i}\right)=\sum_{s=1}^{n} p_{s} r_{i, s} \\
\sigma_{i}=\sqrt{\sum_{s=1}^{n} p_{s}\left(r_{i, s}-E\left(r_{i}\right)\right)^{2}} \\
\sigma_{i, j}=\sum_{s=1}^{n} p_{s}\left(r_{i, s}-E\left(r_{i}\right)\right)\left(r_{j, s}-E\left(r_{j}\right)\right)
\end{gathered}
$$

Risk Management Application

Portfolio expected returns and standard deviations are calculated as follows:

$$
\begin{array}{r}
E\left(r_{p}\right)=\sum_{i=1}^{n} w_{i} E\left(r_{i}\right) \\
\sigma_{p}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \sigma_{i, j}}
\end{array}
$$

where w_{i} represents the proportion of the portfolio allocated to asset i, σ_{i} and σ_{i}^{2} correspond to asset i 's standard deviation and variance respectively, and $\sigma_{i j}$ corresponds the covariance between the returns on assets i and j.

Risk Management Application

For a two-asset portfolio, portfolio variance is written as:

$$
\begin{aligned}
\sigma_{p}^{2} & =w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+2 w_{1} w_{2} \sigma_{12} \\
& =w_{1}^{2} \sigma_{1}^{2}+\left(1-w_{1}\right)^{2} \sigma_{2}^{2}+2 w_{1}\left(1-w_{1}\right) \sigma_{12} \\
& =w_{1}^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+2 w_{1}\left(\sigma_{12}-\sigma_{2}^{2}\right)+\sigma_{2}^{2}-2 w_{1}^{2} \sigma_{12}
\end{aligned}
$$

Suppose we wish to determine the values for w_{1} and W_{2} which minimize σ_{p}^{2}.

Risk Management Application

Since $\sigma_{p}^{2}=w_{1}^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+2 w_{1}\left(\sigma_{12}-\sigma_{2}^{2}\right)+\sigma_{2}^{2}-2 w_{1}^{2} \sigma_{12}$, σ_{p}^{2} is minimized by differentiating it with respect to w_{1}, setting the result equal to zero, and solving for w_{1}

$$
\begin{aligned}
\frac{d \sigma_{p}^{2}}{d w_{1}} & =2 w_{1}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+2\left(\sigma_{12}-\sigma_{2}^{2}\right)-4 w_{1} \sigma_{12} \\
& =w_{1}\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}\right)+\sigma_{12}-\sigma_{2}^{2}=0 .
\end{aligned}
$$

Solving the equation above for w_{1}, we find that

$$
w_{1}=\frac{\sigma_{2}^{2}-\sigma_{12}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}} .
$$

Statistics Class Problem

Suppose the return distributions for two risky assets are as follows:

State	p_{s}	$r_{a, s}$	$r_{b, s}$
1	$1 / 3$	-3%	36%
2	$1 / 3$	9%	-12%
3	$1 / 3$	21%	12%

1. Calculate the expected returns for assets a and b.
2. Calculate the variances and standard deviations for assets a and b.
3. Calculate the covariance and correlation between assets a and b.
4. Calculate the expected return and standard deviation for an equally weighted portfolio consisting of asset a and b.
5. Determine the least risky combination of assets a and b and calculate the expected return and standard deviation for such a portfolio.
