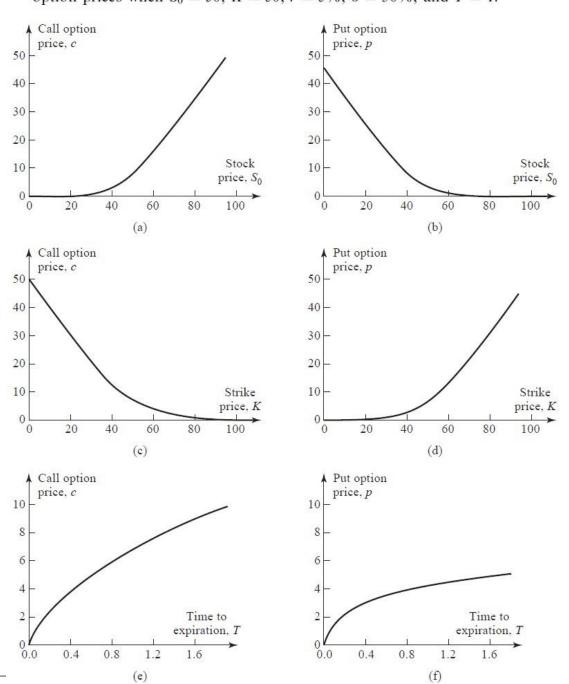
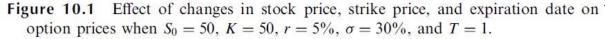
Properties of Stock Options

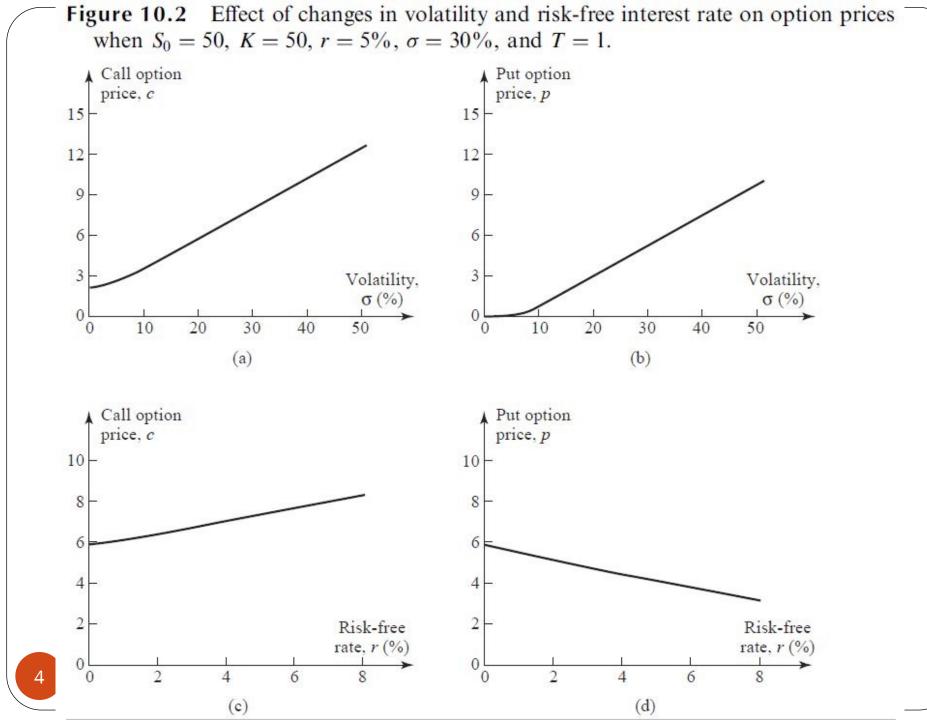
Lecture #7: Properties of Stock Options

Factors Affecting Option Prices

Variable	Call Option	Put Option
Current Stock Price	+	-
Exercise Price	-	+
Time to Expiration	+	
Volatility	+	+
Risk-Free Rate	+	-
Dividends	_	+







Assumptions and Notation

- *c*: European call option price
- *p*: European put option price
- S(t): Stock price at date t
- *K*: Strike or exercise price
- *T t*: Remaining life of option
- **σ**: Volatility of stock price

- *C*: American Call option price
- *P*: American Put option price
- D: Present value of dividends during the option's life
- *r*: Risk-free rate for maturity *T* with continuous compounding

• A call option is never worth more than the underlying stock:

 $C(S, K, t, T) \le S(t) \& c(S, K, t, T) \le S(t)$

• A put option is never worth more than the exercise price:

 $P(S, K, t, T) \le K \& p(S, K, t, T) \le K$

• A European put option is never worth more than the present value of the strike price:

 $p(S, K, t, T) \leq Ke^{-r(T-t)} \leq K$

• This is because the payoff at maturity of a European put option cannot exceed *K*.

• Options never have negative value: $c(S, K, t, T) \ge 0 \& C(S, K, t, T) \ge 0$ $p(S, K, t, T) \ge 0 \& P(S, K, t, T) \ge 0$ • American options are at least as valuable as

European options:

$$C(S, K, t, T) \ge c(S, K, t, T)$$
$$P(S, K, t, T) \ge p(S, K, t, T)$$

• American options with more time to maturity are at least as valuable as the same options with less time to maturity:

$$C(S, K, t, T_2 > T_1) \ge C(S, K, t, T_1)$$
$$P(S, K, t, T_2 > T_1) \ge P(S, K, t, T_1)$$

 European call options with more time to maturity are at least as valuable as the same options with less time to maturity:

$$c(S, K, t, T_2 > T_1) \ge c(S, K, t, T_1)$$

 An American option is worth at least its exercised value (the payoff you receive if you exercise today):

 $C(S, K, t, T) \ge \max[0, S(t) - K]$ $P(S, K, t, T) \ge \max[0, K - S(t)]$

• Note: no such restriction exists for European options because exercise may only occur at date *T*.

No-Arbitrage Bounds on Options • The price of a call option satisfies: $c(S, K, t, T) \ge \max[0, S(t) - Ke^{-r(T-t)}]$ $C(S, K, t, T) \ge \max[0, S(t) - Ke^{-r(T-t)}]$ <u>Proof:</u> We only need to show that: $c(S, K, t, T) \ge \max[0, S(t) - Ke^{-r(T-t)}],$ since $C(S, K, t, T) \ge c(S, K, t, T)$ (see p. 8)

Calls: An Arbitrage Opportunity?

- Suppose that
 - c = 3 $S_0 = 20$

 T = 1 r = 10%

 K = 18 D = 0

• Is there an arbitrage opportunity?

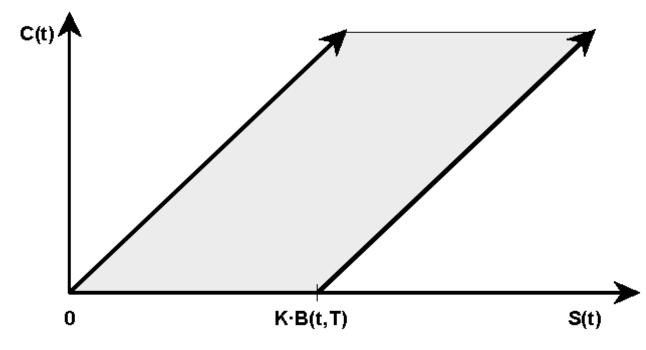
No-Arbitrage Bounds on Options • The price of a put option satisfies: $p(S, K, t, T) \ge \max[0, Ke^{-r(T-t)} - S(t)]$ $P(S, K, t, T) \ge \max[0, Ke^{-r(T-t)} - S(t)]$ <u>Proof:</u> We only need to show that: $p(S, K, t, T) \ge \max[0, Ke^{-r(T-t)} - S(t)],$ since $P(S, K, t, T) \ge p(S, K, t, T)$. (see p. 8)

Puts: An Arbitrage Opportunity?

• Suppose that p = 1 $S_0 = 37$ T = 0.5 r = 5%K = 40 D = 0

• Is there an arbitrage opportunity?

No-Arbitrage Bounds on Options Since $\max[0, S(t) - Ke^{-r(T-t)}] \le c \le S(t)$, this implies that the value of a European call option on a non dividend paying stock lies within the shaded region shown below:



Lecture #7: Properties of Stock Options

No-Arbitrage Bounds on Options Since $\max[0, Ke^{-r(T-t)}-S(t)] \le p \le Ke^{-r(T-t)}$, this implies that the value of a European put option on a non dividend paying stock lies within the shaded region shown below:

