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Factors Affecting Option Prices

Variable Call Option |Put Option
Current Stock Price + -
Exercise Price - +
Time to Expiration + P
Volatility + +
Risk-Free Rate + -
Dividends - +
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Figure 10.1

Effect of changes in stock price, strike price, and expiration date on

option prices when Sy = 50, K = 50, r = 5%, 0 =30%, and T = 1.
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/‘ Figure 10.2 Effect of changes in volatility and risk-free interest rate on option prices
when Sy =50, K =50, r =5%, 0 =30%, and T = 1.
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e
Assumptions and Notation

® c¢: European call option e (. American Call option
price price

® p: European put option

P: American Put option
o p
price

* 5(2): Stock price at date ¢

price

e [): Present value of

o 1. Qpu .
K: Strike or exercise dividends during the option’s

life

e 7. Risk-free rate for

price
® T—t: Remaining life of
opﬁon

* ©: Volatility of stock maturity 1" with continuous

price

@ Lecture #7: Properties of Stock Options

compounding




e
No-Arbitrage Bounds on Options

® A call option is never worth more than the

underlying stock:
CS, K t,T)<8(t) &c(5, K, t,T) < 5(t)

® A put option is never worth more than the

exercise price:

P(S, K t,T)<K & p(§,K,t,T) <K
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No-Arbitrage Bounds on Options

* A European put option is never worth more

than the present value of the strike price:
p(S, K, t,T) < Ke™ ™ <K
® This is because the payoff at maturity of a

European put option cannot exceed K.
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No-Arbitrage Bounds on Options

® Options never have negative value:
(5,K,t,T)=20 & C(S,K,t,T) =20
p(S,K,t,T)=20 & P(§,K,t,T) =0

® American options are at least as valuable as

European options:
C(S, K, t,T) > c($, K, t,T)
PS5 K t,T) > p(S, K t,T)
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e
No-Arbitrage Bounds on Options

® American options with more time to maturity are at
least as valuable as the same options with less time to
maturity:

C(S, K, t, T, >T,) 2 C(S, K, t,T,)
PGS, K, t, T, >T;) > P(S, K, 1,T;)
® European call options with more time to maturity

are at least as valuable as the same options with less
time to rnaturity:

(S, K, t,T,>T)) 2 c(S, K, t,T)
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No-Arbitrage Bounds on Options

® An American option is worth at least its

exercised value (the payoff you receive it you

exercise today):
C($, K, t,T) 2> max
P(S, K, ¢, 1) 2> max

0,5(t) - K|

0, K- 5(1)]

® Note: no such restriction exists for European

options because exercise may only occur at

date T.
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No-Arbitrage Bounds on Options

® The price of a call option satisfies:
(S, K, t, T) 2 max|0, S(t) - Ke™()]
C(S, K, t,T) 2 max[0, S(t) - Ke™"™)]

Proof: We only need to show that:
(S, K, t,T) 2 max|[0, S(t) - Ke™ ],
since C(S, K, t,T) 2 ¢(S, K, t,T) (see p. 8)
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- Calls: An Arbitrage Opportunity?

® Suppose that

c =73 Sy = 20
=1 r = 10%
K =18 D=0

® [s there an arbitrage opportunity?
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No-Arbitrage Bounds on Options

® The price of a put option satisfies:

p($, K, t,T) 2 max
P(S, K, t,T) 2> max

0, Ke™ ™) - S(ty

0, Ke™ ) - S(t)

Proof: We only need to show that:
p($, K, t,T) 2 max|0, Ke™(FH) 5(t)],
since P(S, K, t,T) 2 p(S, K, t, T). (see p. 8)
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" Puts: An Arbitrage Opportunity?

® Suppose that

p =1 So = 37
I =0.5 r =5%
K =40 D =0

® [s there an arbitrage opportunity?
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No-Arbitrage Bounds on Options
Since max|0, S(7) - Ke(T9)] < ¢ < 5(7), this implies
that the value ot a European call option on a non
dividend paying stock lies within the shaded
region shown below:

C{t}A

0 K-B(t,T) S(t)
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No-Arbitrage Bounds on Options
Since max|[0, Ke(T9)-§(7)] < p < Ken(T9), this implies
that the value of a European put option on a non
dividend paying stock lies within the shaded
region shown below:
ey 4
K-B(t,T) >

0 K-B(t,T) S(t)
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