Trading Strategies Involving Options

Trading Strategies Involving Options

- I. Covered Calls and Protective Puts
- II. Spread Strategies bull, bear, butterfly and calendar
- III. Straddles, Strips, Straps, and Strangles

Assumptions

- Zero interest rate;
- Options are European, not American;
 and
- Underlying stock doesn't pay a dividend.

Three Alternative Strategies

- Take a position in the option and the underlying.
- Take a position in 2 or more options of the same type (a spread).
- Take a position in a mixture of calls and puts (a combination).

Positions in an Option & the Underlying

Bull Spread Using Calls

Bull Spread Using Calls

Suppose an investor buys a call with a strike price of \$30 for \$3 and sells a call with a strike price of \$35 for \$1. Then the payoffs and profits from this spread are as follows:

Stock Price Range	Payoff from long call option	Payoff from short call option	Total Payoff	Profit
$S_T \ge 35$	$S_T - 30$	$35 - S_T$	35 - 30	3
$30 < S_T < 35$	$S_T - 30$	0	$S_T - 30$	$S_T - 32$
$S_T \leq 30$	0	0	0	-2

Bull Spread Using Puts

Bull Spread Using Puts

Suppose an investor buys a put with a strike price of \$30 for \$1 and sells a put with a strike price of \$35 for \$3. Then the payoffs and profits from this spread are as follows:

Stock Price Range	Payoff from long put option	Payoff from short put option	Total Payoff	Profit
$S_T \ge 35$	0	0	0	2
$30 < S_T < 35$	0	$S_T - 35$	$S_T - 35$	$S_T - 33$
$S_T \le 30$	$30 - S_T$	$S_T - 35$	30 - 35	-3

Bear Spread Using Calls

Bear Spread Using Calls

Suppose an investor buys a call with a strike price of \$35 for \$1 and sells a call with a strike price of \$30 for \$3. Then the payoffs and profits from this spread are as follows:

Stock Price Range	Payoff from long call option	Payoff from short call option	Total Payoff	Profit
$S_T \ge 35$	$S_T - 35$	$30 - S_T$	30 - 35	-3
$30 < S_T < 35$	0	$30 - S_T$	$30-S_T$	$32 - S_T$
$S_T \leq 30$	0	0	0	+2

Bear Spread Using Puts

Bear Spread Using Puts

Suppose an investor buys a put with a strike price of \$35 for \$3 and sells a put with a strike price of \$30 for \$1. Then the payoffs and profits from this spread are as follows:

Stock Price Range	Payoff from long put option	Payoff from short put option	Total Payoff	Profit
$S_T \ge 35$	0	0	0	- 2
$30 < S_T < 35$	$35 - S_T$	0	$35 - S_T$	$33 - S_T$
$S_T \leq 30$	$35 - S_T$	S_T – 30	35 - 30	3

Butterfly Spread Using Calls

Butterfly Spread Using Calls

Suppose that a stock is worth \$61, and an investor implements a butterfly call spread strategy using the following set of call options:

Exercise	Call Price
Price	
\$55	\$10 (buy 1)
\$60	\$7 (sell 2)
\$65	\$5 (buy 1)
Total Cost	\$1

Butterfly Spread Using Calls

Stock Price Range	Payoff from 1 st long call option	Payoff from 2 nd long call option	Payoff from 2 short calls	Total Payoff
$S_T < K_1$	0	0	0	0
$K_1 < S_T < K_2$	$S_T - K_1$	0	0	$S_T - K_1$
$K_2 < S_T < K_3$	$S_T - K_1$	0	$-2(S_T-K_2)$	$K_3 - S_T$
$S_T > K_3$	$S_T - K_1$	$S_T - K_3$	$-2(S_T - K_2)$	0

Stock Price Range	Payoff from 1 st long call option	Payoff from 2 nd long call option	Payoff from 2 short calls	Total Payoff
$S_T < 55$	0	0	0	0
$55 < S_T < 60$	$S_T - 55$	0	0	$S_T - 55$
$60 < S_T < 65$	$S_T - 55$	0	$-2(S_T - 60)$	$65 - S_T$
$S_T > 65$	$S_T - 55$	$S_T - 65$	$-2(S_T - 60)$	0

Butterfly Spread Using Puts

Butterfly Spread Using Puts

Suppose that a stock is worth \$61, and an investor implements a butterfly put spread strategy using the following set of put options:

Exercise	Call Price		
Price			
\$55	\$5 (buy 1)		
\$60	\$7 (sell 2)		
\$65	\$10 (buy 1)		
Total Cost	\$1		

Butterfly Spread Using Puts

Stock Price Range	Payoff from 1 st long put option	Payoff from 2 nd long put option	Payoff from 2 short puts	Total Payoff
$S_T < K_1$	$K_1 - S_T$	K_3 – S_T	$-2(K_2-S_T)$	0
$K_1 < S_T < K_2$	0	K_3 – S_T	$-2(K_2-S_T)$	$S_T - K_1$
$K_2 < S_T < K_3$	0	K_3 – S_T	0	$K_3 - S_T$
$S_T > K_3$	0	0	0	0

Stock Price Range	Payoff from 1 st long put option	Payoff from 2 nd long put option	Payoff from 2 short puts	Total Payoff
$S_T < 55$	55 - S_T	65 - S_T	$-2(60 - S_T)$	0
$55 < S_T < 60$	0	65 - S_T	$-2(60 - S_T)$	$S_T - 55$
$60 < S_T < 65$	0	65 - S _T	0	$65 - S_T$
$S_T > 65$	0	0	0	0

Calendar Spread Using Calls

Calendar Spread Using Puts

A Straddle Combination

Payoff from a Straddle

Stock	Payoff	Payoff	Total
Price	from call	from put	Payoff
Range			
$S_T \leq K$	0	$K-S_T$	$K-S_T$
$S_T > K$	$S_T - K$	0	$S_T - K$

Straddle Numerical Example

Suppose that a stock is worth \$69, and an investor implements the following straddle:

Stock	Exercise	Call	Put
Price	Price	Price	Price
\$69	\$70	\$4	\$3

Stock	Straddle	Straddle	
Price	Payoff	Profit	
	= Call + Put		
\$69	\$0 + \$1	-\$7+\$1 = -\$6	
\$70	\$0 + \$0	-\$7	
\$75	\$5 + 0	- \$7 + \$5 = - \$2	
\$80	\$10 + 0	- \$7 + \$10 = \$3	

Strip & Strap

A Strangle Combination

Payoff from a Strangle

Stock	Payoff	Payoff	Total
Price	from call	from put	Payoff
Range			
$S_T \leq K_1$	0	$K_1 - S_T$	$K_1 - S_T$
$K_1 \leq S_T < K_2$	0	0	0
$S_T > K_2$	S_T - K_2	0	S_T - K_2