Trading Strategies Involving Options

Trading Strategies Involving Options

I. Covered Calls and Protective Puts
II. Spread Strategies - bull, bear, butterfly and calendar
III. Straddles, Strips, Straps, and Strangles

Assumptions

- Zero interest rate;
- Options are European, not American; and
- Underlying stock doesn't pay a dividend.

Three Alternative Strategies

- Take a position in the option and the underlying.
- Take a position in 2 or more options of the same type (a spread).
- Take a position in a mixture of calls and puts (a combination).

Positions in an Option \& the Underlying

Bull Spread Using Calls

Bull Spread Using Calls

Suppose an investor buys a call with a strike price of $\$ 30$ for $\$ 3$ and sells a call with a strike price of $\$ 35$ for $\$ 1$. Then the payoffs and profits from this spread are as follows:

Stock Price Range	Payoff from long call option	Payoff from short call option	Total Payoff	Profit
$S_{T} \geq 35$	$S_{T}-30$	$35-S_{T}$	$35-30$	3
$30<S_{T}<35$	$S_{T}-30$	0	$S_{T}-30$	$S_{T}-32$
$S_{T} \leq 30$	0	0	0	-2

Bull Spread Using Puts

Bull Spread Using Puts

Suppose an investor buys a put with a strike price of $\$ 30$ for $\$ 1$ and sells a put with a strike price of $\$ 35$ for $\$ 3$. Then the payoffs and profits from this spread are as follows:

Stock Price Range	Payoff from long put option	Payoff from short put option	Total Payoff	
$S_{T} \geq 35$	0	0	0	Profit
$30<S_{T}<35$	0	$S_{T}-35$	$S_{T}-35$	$S_{T}-33$
$S_{T} \leq 30$	$30-S_{T}$	$S_{T}-35$	$30-35$	-3

Bear Spread Using Calls

\uparrow Profit

Bear Spread Using Calls

Suppose an investor buys a call with a strike price of $\$ 35$ for $\$ 1$ and sells a call with a strike price of $\$ 30$ for $\$ 3$. Then the payoffs and profits from this spread are as follows:

Stock Price Range	Payoff from long call option	Payoff from short call option	Total Payoff	Profit
$S_{T} \geq 35$	$S_{T}-35$	$30-S_{T}$	$30-35$	-3
$30<S_{T}<35$	0	$30-S_{T}$	$30-S_{T}$	$32-S_{T}$
$S_{T} \leq 30$	0	0	0	+2

Bear Spread Using Puts

Bear Spread Using Puts

Suppose an investor buys a put with a strike price of $\$ 35$ for $\$ 3$ and sells a put with a strike price of $\$ 30$ for $\$ 1$. Then the payoffs and profits from this spread are as follows:

Stock Price Range	Payoff from long put option	Payoff from short put option	Total Payoff	Profit
$S_{T} \geq 35$	0	0	0	-2
$30<S_{T}<35$	$35-S_{T}$	0	$35-S_{T}$	$33-S_{T}$
$S_{T} \leq 30$	$35-S_{T}$	$S_{T}-30$	$35-30$	3

Butterfly Spread Using Calls

Butterfly Spread Using Calls

Suppose that a stock is worth $\$ 61$, and an investor implements a butterfly call spread strategy using the following set of call options:

Exercise Call Price

Price

$\$ 55$	$\$ 10$ (buy 1)
$\$ 60$	$\$ 7$ (sell 2)
$\$ 65$	$\$ 5$ (buy 1)
Total Cost	$\$ 1$

Butterfly Spread Using Calls

Stock Price Range	Payoff from 1 1ot long call option	Payoff from $2^{\text {nd }}$ long call option	Payoff from 2 short calls	Total Payoff
$S_{T}<K_{1}$	0	0	0	0
$K_{1}<S_{T}<K_{2}$	$S_{T}-K_{1}$	0	0	$S_{T}-K_{1}$
$K_{2}<S_{T}<K_{3}$	$S_{T}-K_{1}$	0	$-2\left(S_{T}-K_{2}\right)$	$K_{3}-S_{T}$
$S_{T}>K_{3}$	$S_{T}-K_{1}$	$S_{T}-K_{3}$	$-2\left(S_{T}-K_{2}\right)$	0

Stock Price Range	Payoff from 1 1ot long call option	Payoff from $2^{\text {nd }}$ long call option	Payoff from 2 short calls	Total Payoff
$S_{T}<55$	0	0	0	0
$55<S_{T}<60$	$S_{T}-55$	0	0	$S_{T}-55$
$60<S_{T}<65$	$S_{T}-55$	0	$-2\left(S_{T}-60\right)$	$65-S_{T}$
$S_{T}>65$	$S_{T}-55$	$S_{T}-65$	$-2\left(S_{T}-60\right)$	0

Butterfly Spread Using Puts

Butterfly Spread Using Puts

Suppose that a stock is worth $\$ 61$, and an investor implements a butterfly put spread strategy using the following set of put options:

Exercise Price	Call Price
$\$ 55$	$\$ 5$ (buy 1)
$\$ 60$	$\$ 7$ (sell 2)
$\$ 65$	$\$ 10$ (buy 1)
Total Cost	$\$ 1$

Butterfly Spread Using Puts

Stock Price Range	Payoff from 1' long put option	Payoff from 2 $^{\text {nd }}$ long put option	Payoff from 2 short puts	Total Payoff
$S_{T}<K_{1}$	$K_{1}-S_{T}$	$K_{3}-S_{T}$	$-2\left(K_{2}-S_{T}\right)$	0
$K_{1}<S_{T}<K_{2}$	0	$K_{3}-S_{T}$	$-2\left(K_{2}-S_{T}\right)$	$S_{T}-K_{1}$
$K_{2}<S_{T}<K_{3}$	0	$K_{3}-S_{T}$	0	$K_{3}-S_{T}$
$S_{T}>K_{3}$	0	0	0	0

Stock Price Range	Payoff from 1 1t long put option	Payoff from $2^{\text {nd }}$ long put option	Payoff from 2 short puts	Total Payoff
$S_{T}<55$	$55-S_{T}$	$65-S_{T}$	$-2\left(60-S_{T}\right)$	0
$55<S_{T}<60$	0	$65-S_{T}$	$-2\left(60-S_{T}\right)$	$S_{T}-55$
$60<S_{T}<65$	0	$65-S_{T}$	0	$65-S_{T}$
$S_{T}>65$	0	0	0	0

Calendar Spread Using Calls

Calendar Spread Using Puts

A Straddle Combination

Payoff from a Straddle

Stock Price Range	Payoff from call	Payoff from put	Total Payoff
$S_{T} \leq K$	0	$K-S_{T}$	$K-S_{T}$
$S_{T}>K$	$S_{T}-K$	0	$S_{T}-K$

Straddle Numerical Example

Suppose that a stock is worth $\$ 69$, and an investor implements the following straddle:

Stock Price	Exercise Price	Call	Put			
Price				$	$	P69
:---						
$\$ 70$						

Stock Price	Straddle Payoff $=$ Call + Put	Straddle Profit
$\$ 69$	$\$ 0+\$ 1$	$-\$ 7+\$ 1=\mathbf{- \$ 6}$
$\$ 70$	$\$ 0+\$ 0$	$-\$ 7$
$\$ 75$	$\$ 5+0$	$-\$ 7+\$ 5=\mathbf{- \$ 2}$
$\$ 80$	$\$ 10+0$	$-\$ 7+\$ 10=\$ 3$

Strip \& Strap

A Strangle Combination

Profit

Payoff from a Strangle

Stock
Payoff
from call from put Payoff
from put Total Price
Range

$S_{T} \leq K_{1}$	0	$K_{1}-S_{T}$	$K_{1}-S_{T}$
$K_{1} \leq S_{T}<K_{2}$	0	0	0
$S_{T}>K_{2}$	$S_{T}-K_{2}$	0	$S_{T}-K_{2}$

