Problem \#1 (32 points)

You are given the following set of prices:

Security	Maturity (years from today)	Exercise Price	Current Price
TC stock	-	-	$\$ 94$
European Put Option on TC stock	1	$\$ 80$	$\$ 5$
European Call Option on TC	1	$\$ 80$	$?$
Zero Coupon Treasury Bill			
(par/maturity value $=\$ 100$ from today)	1	-	$\$ 91$

A. (16 points) What is the price of the call option (assuming that TC stock does not pay dividends)?

SOLUTION: Using put-call parity, we find that $c=p+S-e^{-r T} K=5+94-80^{*} .91=$ $\$ 26.20$.
B. (16 points) Now suppose that the market price of a TC call option (with an exercise price of $\$ 80)$ is $\$ 30$. When you tell your boss that this call option is too expensive, he tells you that you must be wrong; after all, the formula which you used to price the call option is "just" a theory and perhaps the market knows something that you don't concerning the future (possibly "rosy") prospects for TC stock. Prove that your boss is wrong by applying the " arbitrage-free" argument.

SOLUTION: The put-call parity equation relies on the no-arbitrage argument, and if it is violated you can make risk-free profit in the market. Since the call is overpriced, you write (sell) a call and buy a replicating portfolio, which involves buying one unit of stock, buying a put with an exercise price of $\$ 80$ and borrowing $P V(\$ 80)=\$ 72.80$. This strategy will cost you $\$ 26.20$, but you get $\$ 30$ from writing the call. Now you have a net cash flow of $\$ 3.80$, and you have a net cash flow of zero in the future.

Problem \#2 (32 points)

Suppose the riskless rate of interest is 0%, the price of a riskless zero-coupon bond is $\$ 1$, and the price of a (non-dividend paying) stock is $\$ 1$. In the future, only two equally probable outcomes exist for the economy, good and bad. In the good state, the stock is worth $\$ 2$, whereas in the bad state, the stock is worth $\$.50$.
A. (8 points) Show that the replicating portfolio for a European call option with an exercise price of $\$ 1$ comprises a long position in $2 / 3$ of a share of stock and a short position in $1 / 3$ of one bond (Hint: you can either show this analytically or numerically by demonstrating that the state-contingent payoffs on the replicating portfolio and the call option are identical).

SOLUTION: If I hold a portfolio comprising $2 / 3$ of a share of stock and a short position in $1 / 3$ of one bond, then in the good state, this portfolio pays off $(2 / 3)(2)-(1 / 3)(1)=\$ 1$, and in the bad state, this portfolio pays off $(2 / 3)(.5)-(1 / 3)(1)=\$ 0$. This replicates the
payoff on the call option; since $c(T)=\max (0, S(T)-K)$, in the good state the call pays off $\max (0,2-1)=\$ 1$, and in the bad state the call pays off $\max (0, .5-1)=\$ 0$.
B. (8 points) What is the "arbitrage-free" price for this call option?

SOLUTION: Since the replicating portfolio (which comprises $2 / 3$ of a share of stock and a short position in $1 / 3$ of one bond) is worth $(2 / 3)(1)-(1 / 3)(1)=\$ 0.33$, then the call option must be worth this same amount; otherwise riskless arbitrage profits could be earned.
C. (8 points) Show that the replicating portfolio for a European put option with an exercise price of $\$ 1$ comprises a short position in $1 / 3$ of a share of stock and a long position in $2 / 3$ of one bond (Hint: you can either show this analytically or numerically by demonstrating that the state-contingent payoffs on the replicating portfolio and the put option are identical).
SOLUTION: If I hold a portfolio comprising $-1 / 3$ of a share of stock and $2 / 3$ of one bond, then in the good state, this portfolio pays off $(2 / 3)(1)-(1 / 3)(2)=\$ 0$, and in the bad state, this portfolio pays off $(2 / 3)(1)-(1 / 3)(.5)=\$.5$. This replicates the payoff on the put option; since $p(T)=\max (0, K-S(T))$, in the good state the put pays off $\max (0,1-2)=\$ 0$, and in the bad state the put pays off $\max (0,1-.5)=\$.50$.
D. (8 points) What is the "arbitrage-free" price of a put option on the stock with an exercise price of $\$ 1$?

SOLUTION: Since the replicating portfolio (which comprises $-1 / 3$ of a share of stock and a long position in $2 / 3$ of one bond) is worth $-(1 / 3)(1)+(2 / 3)(1)=\$ 0.33$, then the put option must be worth this same amount; otherwise riskless arbitrage profits could be earned. Note also that one can simply invoke the put-call parity equation to establish the price for the put; since the call is worth $\$ 0.33$ and the stock and the bond are both worth $\$ 1$ each, it follows that $p=c+e^{-r T} K-S=\$ 0.33+\$ 1-\$ 1=\$ 0.33$.

Problem \#3 (32 points)

Suppose the euro is currently trading at $\$ 1.50$ and that one-year zero-coupon bonds (with face values of 100) in the U.S. and Europe are trading at $\$ 95$ and $\$ 93.10$ respectively.
A. (8 points) What is the one-year forward price of the euro?

SOLUTION: We can infer the one-year U.S. and European interest rates from the prices of the U.S. and the euro zero-coupon bonds; since U.S. bonds are worth $\$ 95=e^{-r_{S}} \$ 100$, this implies that $r_{\$}=\ln (100 / 95)=5.13 \%$, and since euro bonds are worth $\$ 93.10=e^{-r_{\epsilon}} \$ 100$, this implies that $r_{\epsilon}=\ln (100 / 93.10)=7.15 \%$. Thus, the one-year forward price of the euro is

$$
F(t, T)=S(t) \times e^{\left(r_{\S}-r_{\epsilon}\right) \times(T-t)}=\$ 1.5 e^{(.0513-0715)}=\$ 1.47
$$

B. (8 points) What is the replicating portfolio for a one-year euro forward contract (based upon the forward price that you calculated in part (A))?

SOLUTION: The forward contract delivers one euro one year from today. The replicating portfolio comprises a long euro bond position currently worth $S(t) \times e^{-r_{\epsilon} \times(T-t)}=$ $\$ 1.5 e^{-.0715}=\$ 1.3965$ and a short U.S. bond position currently worth $F(t, T) \times e^{-r_{\Phi} \times(T-t)}=$ $\$ 1.47 e^{-.0513}=\$ 1.3965$; thus today's value of the replicating portfolio $S(t) \times e^{-r_{\epsilon} \times(T-t)}-$ $F(t, T) \times e^{-r_{S} \times(T-t)}=\$ 1.3965-\$ 1.3965=\$ 0$, which of course corresponds to the initial value of the forward contract.
C. (8 points) Suppose the price of a one-year Euro forward contract is $\$ 1.49$. Outline a trading strategy that would enable you to you make a riskless arbitrage profit. How much profit would you earn from implementing such a strategy?
SOLUTION: At $\$ 1.49$, the one-year Euro forward contract is too expensive, so we would want to sell Euros forward, borrow Euros and lend dollars. The following table outlines the riskless arbitrage strategy:

Transaction	now	One year from now
Sell Forward	0	$\$ 1.49-S_{T}$
Lend $e^{-r_{\epsilon}}=e^{-.0715}=.931$ euros @ $\$ 1.50$	$-\$ 1.3965$	S_{T}
Borrow $e^{-r_{8}}=e^{-.0513}=.95$ dollars @ $\$ 1.47$	$\$ 1.3965$	$-\$ 1.3965 e^{.0513}=-\$ 1.47$
Total	0	$\$ 0.02$

D. (8 points) Suppose that you "buy" the forward contract for the price that you calculated in part (A), and immediately after your purchase, the Fed raises interest rates. With the rate hike,

- The U.S. bond falls in value from $\$ 95$ to $\$ 93.10$,
- The Euro bond price remains unchanged, and
- The dollar strengthens, with the dollar value of the Euro falling to $\$ 1.48$.

If you immediately close out the contract (i.e., sell it), how much money will you make or lose?

SOLUTION: Since this change in Fed policy occurs immediately, the value of the replicating portfolio is now $e^{-.0715}(S(t)-F(t, T))=.931(1.48-1.47)=\$ 0.00931$. Thus the profit that I earn from the scenario described above is $\$ 0.00931$ per euro that I bought forward.

